Agentic Al in Healthcare 1 September 2025

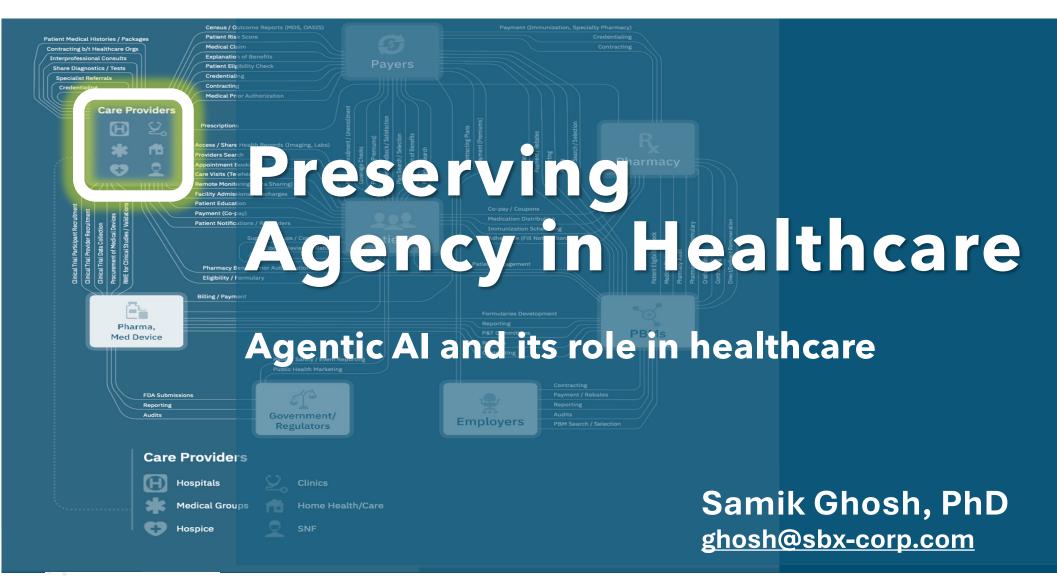
Introduction to Agentic Al and its role in Healthcare

Agentic AI in Healthcare 1 September 2025

Samik Ghosh, COO, SBX Corporation

Samik Ghosh's career spans science, engineering and entrepreneurship. He serves as COO at SBX Corporation Tokyo group, CEO of SBX Technologies, a SBX subsidiary company focused on healthcare and is a Senior Scientist at The Systems Biology Institute, Tokyo.

He holds a PhD in Computer Sciences from University of Texas and has diverse experience in life-science and healthcare industries in India, USA and Japan.



Agentic Al in Healthcare Workshop

29 August
2025 A.D
A.D = Agent London

Journey began 25 years ago in "systems thinking"

25 years of Innovation

- Over 2 decades in the business of Biology
- Category creator in "Systems Biology"
- Pioneer at the intersection of biology, data & compute
- Bootstrapped, profitable and stable organic growth over a decade

The <u>Systems Biology Institute (SBI)</u>, Tokyo, Japan is a non-profit private research institution established in 2000 to promote

systems biology research and its application to medicine and global sustainability. SBI focuses on the rapid translation of basic research to practical outcomes for both business and clinical applications. SBI has been engaged in a series of research programs funded by government grants, both national and international as well as extensive private contracts for industrial applications of systems biology research.

SBX Corporation, Japan (SBX Group and its subsidiaries) is a tech.bio spin-off from SBI, Tokyo, established in 2011, focused on

digital biology products and services to enable drug discovery and healthcare. Driven by deep science, powerful platforms, and precision engineering, the diverse team of SBX spread across Japan, North America, and India harnesses the power of data and intelligence to provide bespoke solutions for global companies in drug discovery, health, and wellbeing.

Global Talent Network

Locations

Building agents for craftmanship

Connectivity and automation platform

Powered by GarudaTM is a technology framework, enabled by the Garuda platform, which provides connectivity and automation of diverse data, devices and analytics to create novel pipelines, products and solutions in various science and industry verticals in platform-agnostic manner.

Text analytics and intelligence platform

Taxila is a living system which grows and learns by forming new connections from an ever-accumulated knowledge.

Powered by TaxilaTM is a technology framework, enabled by the Taxila platform, which provides automatic context-aware aggregation and search of relevant information, driven by Al-powered mining and analytics engine for driving actionable insights with an intuitive user interface to create new and own insights on the topic and resource of your interest.

Biomedicine focused intelligence platform

Gandhara provides Wisdom of the Crowd Al approach which integrates a large number of machine learning and deep learning algorithms for big data analytics.

DREAM Challenge, and ranked 4th

amongst 142 global submissions

Nat Commun. 2019 Jun 17;10(1):2674. https://www.nature.com/articles/s41467-019-

Public domain machine learning challenge to predict drug synergy from multi-dimensional big data (2015-2016)

Harnessing Intelligence in various Shades & Size

Shades of Al

Rule-based Systems

Rule-based, rigid and template-driven. Focus on automation (RPA) for efficiency.

Example: Rule-based report generation and checking

Static Al Systems

Systems that employ learning models on static datasets and solve specific problems

Example: Supervised learning for classification of documents,

Dynamic Al Systems

Systems which are trained on static datasets for specific problem but with capability to augment their learning from new data in dynamic manner.

Example: Risk assessment of compounds based on existing data with the ability to learn from novel compound information

Generative AI systems

Pre-trained large-scale models (language models) trained on vast datasets with the ability to generate output based on specific prompts

Large Language Models for Pathway Curation: **A Preliminary Investigation**

Link Prediction for Hypothesis Generation: An

Active Curriculum Learning Infused Temporal

Graph-Based Approach

Uchenna Akujuobi^{1*†}, Priyadarshini Kumari^{2*†}, Jihun A. Choi¹, Samy Badreddine³, Kana Maruyama¹, Sucheendra K. Palaniappan⁴, Tarek R. Besold³

> ¹Sony AI, Tokyo, Japan. ²Sony AI, Cupertino, USA. ³Sony AI, Barcelona, Spain. ⁴The Systems Biology Institute, Tokyo, Japan.

*Corresponding author(s). E-mail(s): uchenna.akujuobi@sony.com; privadarshini.kumari@sonv.com: Contributing authors: jihun.a.choi@sony.com;

samy.badreddine@sony.com; kana.maruyama@sony.com; sucheendra@sbi.jp; tarek.besold@sony.com; [†]These authors contributed equally to this work.

Over the last few years Literature-based Discovery (LBD) has regained popularity as a means to enhance the scientific research process. The resurgent interest has spurred the development of supervised and semi-supervised machine learn ing models aimed at making previously implicit connections between scientific ing modes aimed as imaging previously implied countercodes developed concepts/entities explicit based on often extensive repositories of published literature. Understanding the temporally evolving interactions between these entities can provide valuable information for predicting the future development of entity relationships. However, existing methods often underutilize the latent information embedded in the temporal aspects of interaction data.

In this context, motivated by applications in the food domain—where we ain nnect nutritional information with health-related benefits—we address the

ProtoCode: Leveraging large language models (LLMs) for automate generation of machine-readable PCR protocols from scientific publication

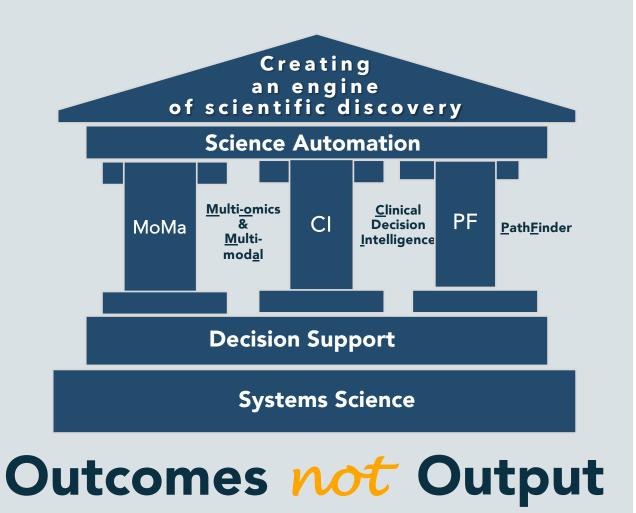
Replicating a High-Impact Scientific Publication Using Systems of Large Language Models

Asking the right questions for mutagenicity prediction from

DTox: A deep neural network-based in visio lens for large scale toxicogenomics data

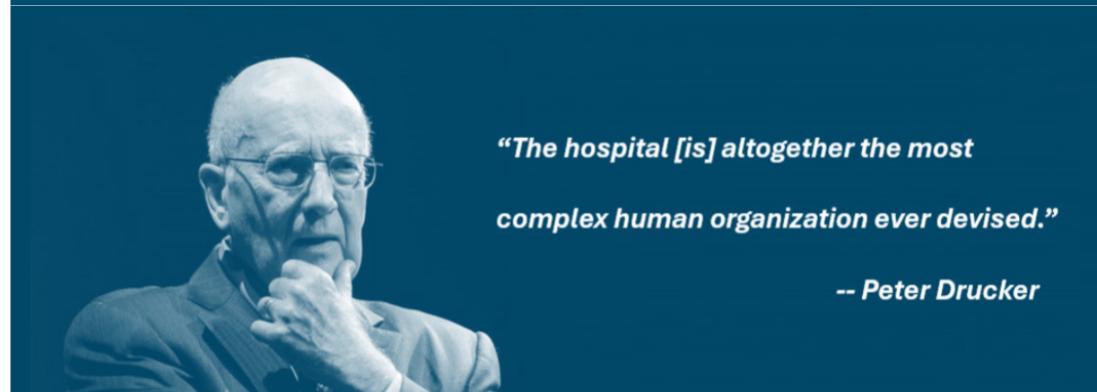
https://www.sbi.jp/publications

Bridging the gap from "cure" to "care"



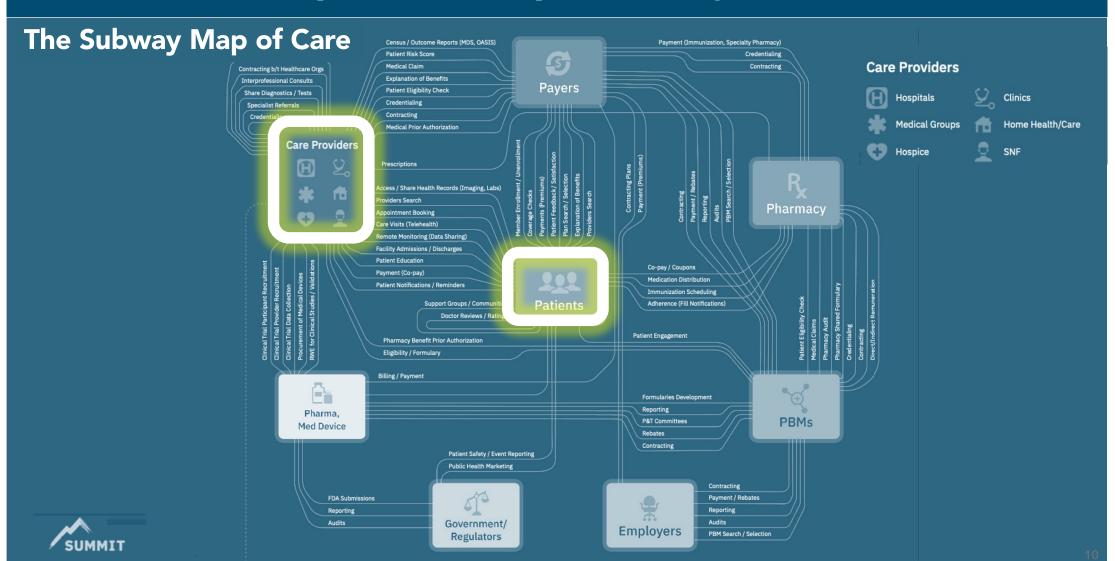


Complexity of Care



Peter F. Drucker. They're Not Employees, They're People, HBR Magazine 2002 Article https://hbr.org/2002/02/theyre-not-employees-theyre-people

We need a "compass" & "map" to navigate



Care is DUST(y) - Difficult, Uncertain, Scary & Tedious

Diagnostic laboratories

Analyze and provide accurate and identifiable data on samples to clinic

Research Laboratory/ Pharma trials

- Conduct research on new formulations and drugs
- · Perform clinical trials
- · Collect and analyze data

Patients

Get better and continuous advise and consultation on health and well being

Clinic

- Provide better healthcare outcomes to patients
- Improve operational efficiency and productivity
- · Increase sales/ value to patients

Medical equipments

Happy Providers make Happy Patients

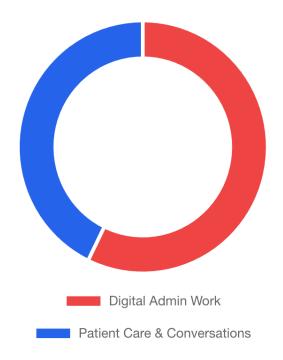
Death by a thousand "clicks" and "cuts" (of paper)

The Silent Cost of Clicks

In a typical 3-hour clinic session, a significant portion of a doctor's time is consumed by digital administrative tasks. This chart shows the breakdown, highlighting the time lost to

clicks, scrolling, and typing instead of patient care.

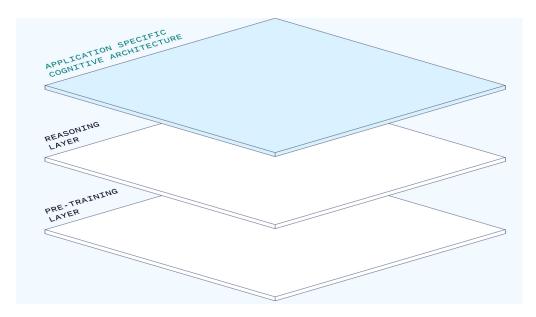
A Doctor's Time in a 3-Hour Clinic (180 mins)



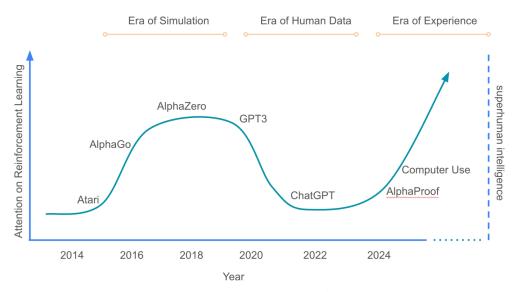
Dr. Zhong Wei Khor · 2nd + Follow NHS Cancer Doctor. We connect He... So, what was I doing? Visit my website - Checking previous clinical letters, scans, and blood I spent 1 hour and 43 minutes in front of my computer during a 3-hour clinic. Ordering blood tests and investigations. - Approving chemotherapy prescriptions. Not seeing patients. - Reviewing dictated letters. Not having conversations. - Following up on results and imaging. Not delivering care. Essentially, admin-digital paperwork. Just clicking, scrolling, and typing. All necessary. None easily replaced. Out of curiosity, I decided to audit my time-tracking how much of my clinic was spent on a computer rather than with my patients. But it struck me: digital transformation in healthcare I started the stopwatch when I began my clinic, has often just turned paperwork into computer work. paused it every time I had a patient with me, and restarted it once I was back at my computer. We don't need more digital paperwork. I spent more time on the computer than with my We need better digital solutions—technology that patients. helps us do all this with fewer clicks and less time. Because every extra click takes away from patient And that's a trade-off we shouldn't have to make.

01:43:26.77

Standing on the threshold of a new Era



- This leap from pre-trained instinctual responses ("System 1") to deeper, deliberate reasoning ("System 2") is the next frontier for AI.
- It's not enough for models to simply know things—they need to pause, evaluate and reason through decisions in real time.



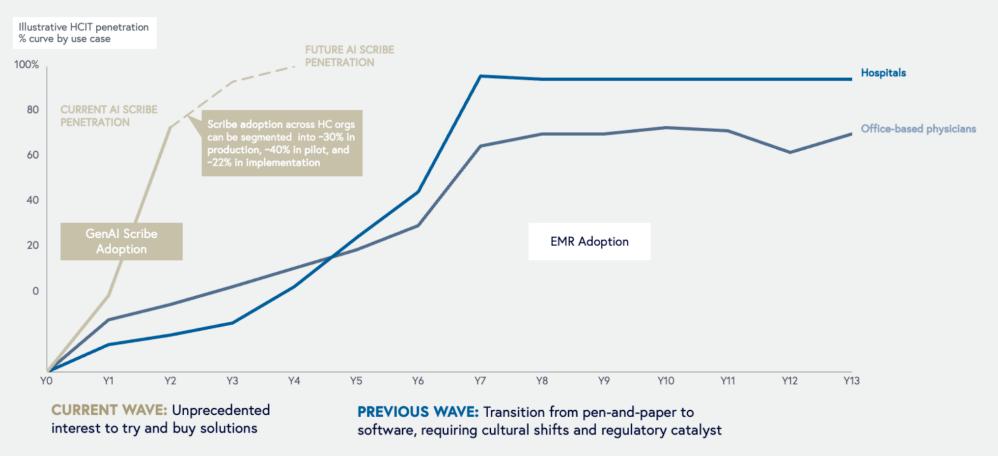
Welcome to the Era of Experience

David Silver, Richard S. Sutton*

- We stand on the threshold of a new era in artificial intelligence that promises to achieve an unprecedented level of ability.
- A new generation of agents will acquire superhuman capabilities by learning predominantly from experience.

With new opportunities in healthcare

How this AI wave differs from the prior software revolution



To color the white space of operations

Heat Map of Health Care Tasks, Natural Language Processing (NLP) and Natural Language Understanding (NLU) Tasks, and Dimensions of Evaluation Across 519 Studies

Health care tasks							
Enhancing medical knowledge -	222	91	44	33	16	10	3
Making diagnoses -	100	38	11	11	14	4	0
Educating patients -	88	68	32	22	18	3	2
Making treatment recommendations -	47	22	9	8	3	1	0
Communicating with patients -	35	29	8	15	22	1	0
Care coordination and planning -	36	24	4	5	7	1	0
Triaging patients -	24	7	5	2	8	8	0
Carrying out a literature review -	18	7	-	_	2	_	0
Synthesizing data for research -	16	1	2	3	2	2	
Generating medical reports -	8	8	2	0	3	0	
Conducting medical research -	8	7	3	3	3	0	
Providing asynchronous care -	8	5	3	3	1	1	
Managing clinical knowledge -	5	5	1	1	0	0	
Clinical note-taking -	6	2	1	1	0	0	
Generating clinical referrals -	3	0	0	0	0	0	
Enhancing surgical operations -	3	3	1	1	0	0	
Biomedical data mining -	2	0	0	0	0	0	
Generating billing codes -	1		0	0	0	0	0
Writing prescriptions -	1	0	0	0	0	0	0
NLP and NLU tasks							
Question answering -	398	194	71	61	54	14	5
Text classification -	29	10	6	5	10	2	0
Information extraction -	29	12	8	5	4	6	0
Summarization -	29	21	7	3	8	0	1
Conversational dialogue -	6	6	1	1	5	1	0
Translation -	5	1	2	2	1	2	0
L	Accuracy	Comprehensiveness	Factuality	Robustness	Fairness, bias, and toxicity evaluation	Deployment metrics	Calibration and uncertainty

White space opportunity to build agency

Original Investigation | AI in Medicine

Testing and Evaluation of Health Care Applications of Large Language Models

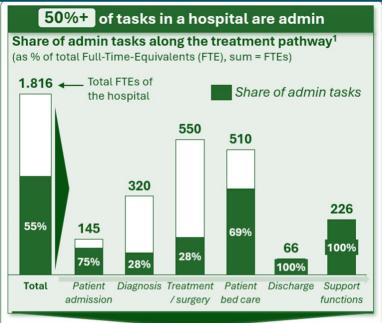
A Systematic Review

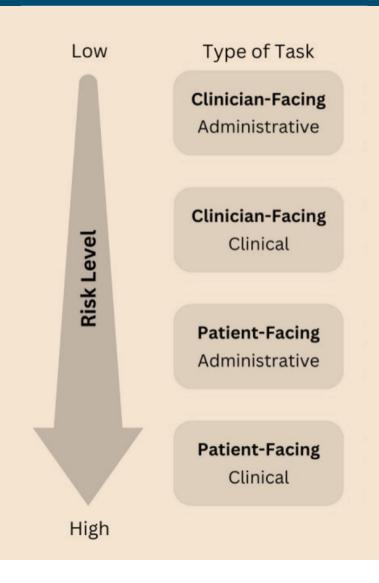
> Author Affiliations | Article Information

https://jamanetwork.com/journals/jama/fullarticle/2825147



Thoughtful balance of risk & rewards



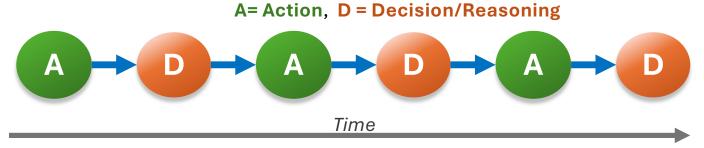


Essence of Agents

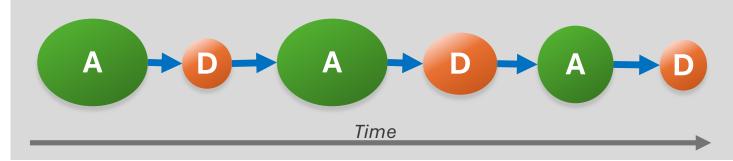
- "Agent" can be defined in several ways
- As fully <u>autonomous systems</u> that operate independently over extended periods, using various tools to accomplish complex tasks.
- As <u>workflows</u> that describe more prescriptive implementations where LLMs and tools are orchestrated through predefined paths

Agents are systems which provide and preserve agency to providers

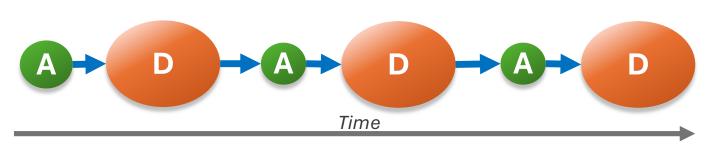
Anatomy of Agency



Most pathways
(clinical, operational)
are a sequence of
actions (A) and decisions (D)



<u>Digital tools</u> tend to increase A and reduce D



Agentic systems should decrease A and increase D

Time to Think (Tik)
Time to Care (ToC)

What should agents NOT do to undermine Agency?

Don't add WIMPs (Windows, Icons, Menu, Pointers)

- ✓ Agents are not apps
- ✓ No new screens, log-ins, forms and dashboards to navigate
- ✓ Interactions are designed to be natural and considerate, reducing digital friction.

Don't break provider pathways

- ✓ Don't add new actions in existing workflows
- ✓ Work in background mostly and surface when needed integrate into existing

Don't increase the risk posture of care

- ✓ Only automate actions which are automatable
- ✓ Work in sand-boxed, tightly scoped functions

What should agents DO to augment Agency?

Clarity & Consistency

- ✓ Work on domain-limited, real-world problems
- ✓ Provide local intelligence
- ✓ Low resistance, high impact

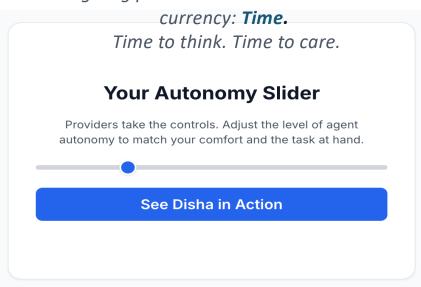
Transparent Reasoning

- ✓ Feed-back and notifications
- ✓ Work in background mostly and surface when needed integrate into existing

Controlled Autonomy

- ✓ Define intent and reveal action
- ✓ Manage risk (autonomy slider)

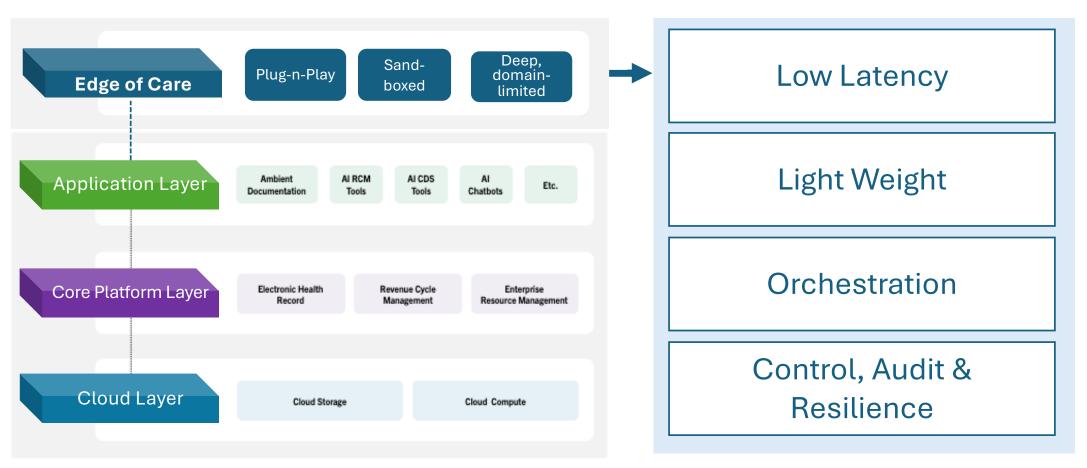
giving provider their most valuable



How can we preserve agency - edge of care

"Mine the Gaps" at the edge of care

Advantage, Agents



https://phti.org/ai-adoption-early-applications-impacts/

How can we preserve agency - hyper-modal interface

How Natural language performs on the speed dimension Bottleneck

RECEIVE		SEND	
Read	~250wpm	Write	~60wpm
Listen	~270wpm	Speak	~150wpm

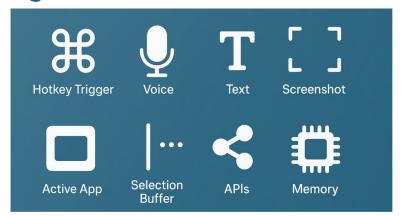
We form thoughts at 1,000-3,000 words per minute

Humans use different modalities for I/O

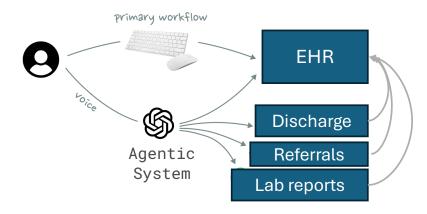
For example, instead of saying "I think what you just said is a great idea", I can just give you a thumbs up. Or nod my head. Or simply smile.

https://julian.digital/2025/03/27/the-case-against-conversational-interfaces/https://roadtoartificia.com/p/the-hypermodal-interface

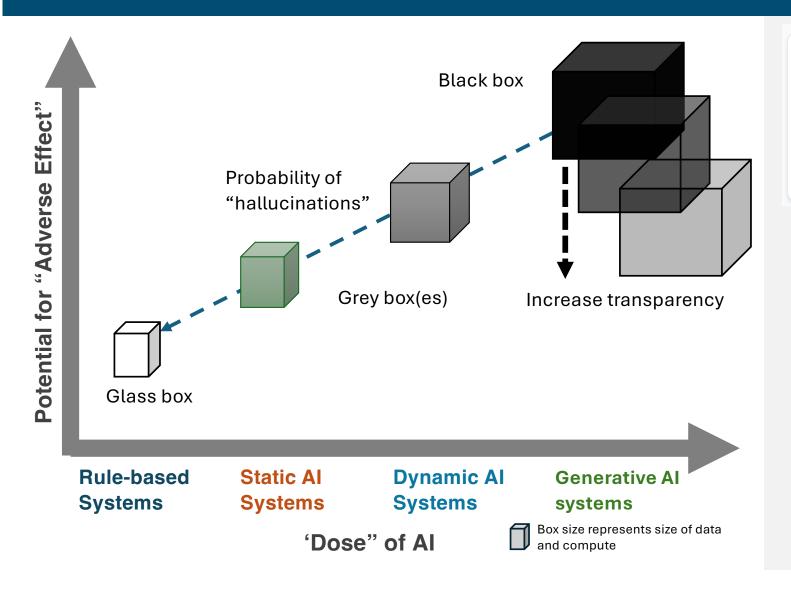
Agents need to interface on all modes



And increase the bandwidth of productivity & collaboration



How can we preserve agency - Err on side of Transparency



Transparent Reasoning

Always know the "Why" behind an action.

Actions are based on reasoning and shaped by your behavior, not hard-coded rules. A "Chain of Thoughts" allows you to build intuition and trust.

R-Tuning: Instructing Large Language Models to Say 'I Don't Know'

Hanning Zhang**, Shizhe Diao**, Yong Lin**, Yi R. Fung*, Qing Lian*, Xingyao Wang*, Yangyi Chen*, Heng Ji*, Tong Zhang* *The Hong Kong University of Science and Technology *University of Illinois Urbana-Champaign

{hzhangco, sdiaoaa, ylindf, qlianab, tongzhang}@ust.hk {yifung2, xingyao6, yangyic3, hengji}@illinois.edu

Large language models (LLMs) have revolu-tionized numerous domains with their impressive performance but still face their challenges, and prodomains to its the propensity for flexe A prodomains takes in the propensity for flexe over the production of the production of the production of the production instruction that provious instruction that provious instruction that provious instruction that provious instruction that produced by the observation of the production is not of the pummeric knowledge, it will try to make up nomething and fail to indicate when it lacks knowledge. In this proper, we present a new approach called Rechard. Aware respects a production of the pr Large language models (LLMs) have revoluquestions. Furthermore, when tested on out-of-domain datasets, the refusal ability was found to be a meta-skill that could be generalized to other tasks. Further analysis surprisingly finds that learning the uncertainty results in better

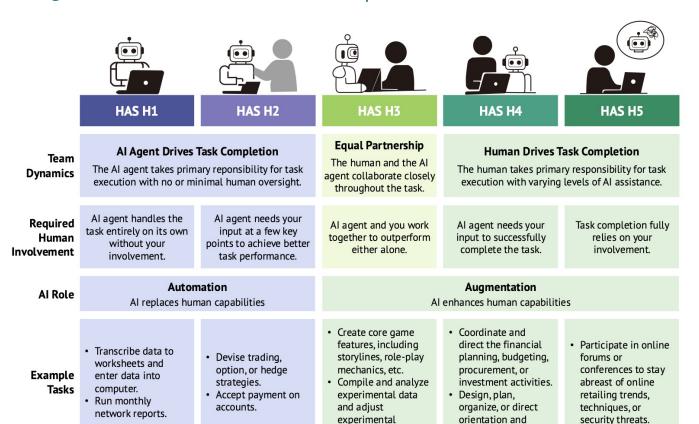
Large language models (LLMs) have demonstrated Large language models (LLMs) have demonstrated remarkable performance across numerous tasks; however, they are also plagued by various issues, such as the propensity of large models to fabricate non-existent facts, a phenomenon commonly re-

stream approaches include retrieval-based methods (Peng et al., 2023; Li et al., 2023b; Luo et al., 2023; Luo et al., 2023; Elaraby et al., 2023; Cohen et al., 2023; Du et al., 2023; Gou et al., 2023; G

In this paper, we first identify the cause of hallu-cination, attributing it to the significant gap exist-ing between the knowledge derived from humanlabeled instruction tuning datasets and the paramet ric knowledge of LLMs. In the process of devel-oping a large model, previous studies (Min et al., 2022; Wang et al., 2023; Zhou et al., 2023) demon-strate that almost all knowledge is acquired in the pre-training stage, while instruction tuning teaches formatting and chain-of-thought prompting guide knowledge elicitation Consider Figure 1 as a knowledge elicitation. Consider Figure 1 as an example. During pre-training, models embed a large volume of factual knowledge, compressing it within their parameters and the fine-tuning pro-cess may include data that is out of the parametric knowledge. However, traditional fine-tuning methods force the models to complete each sen-tence. Even when faced with questions beyond

Learning, Testing & Evaluation (LTE) is key

Human Agency Scale (HAS) to quantify the team dynamics and degree of human involvement required



designs as necessary.

training programs.

Future of Work with AI Agents:

Auditing Automation and Augmentation Potential across the U.S. Workforce

Yijia Shaoʻ, Humishka Zopeʻ, Yucheng Jiang, Jiaxin Pei, David Nguyen, Erik Brynjolfsson, Diyi Yang Stanford University {shaoyj, diyiy}@stanford.edu

Abstra

The rapid rise of compound A systems (a.k.a. A. algoribl is reshaping the labor market, raising concerns about 50 displacement, diminished burnan agrees, and overrelinence on automation. Net well ack a systematic understanding of the evolving landscape. In this paper, we address this gap by introducing a novel auditing framework assess which conjugate the state of the conjugate of the several algorithm of the conjugate of the several algorithm of the conjugate of the conjugate

1 Introduction

6 Jun 2025

Rapid advances in foundation models, such as large language models (LLMs), has catalyzed growing interest in Al agents goal-directed systems equipped with tool access and multi-step execution capabilities. Unlike standalone models, these agents can perform complex workflows and are increasingly positioned to take on roles across a broad range of professional domains (Jlang et al., 2024, Nao et al., 2024a, Wang et al., 2024b, Yang et al., 2024, Yao et al., 2024). Their integration into occupational settings is already beginning to shape the labor market (Demirci et al., 2025; Hoffmann et al., 2024). For example, research indicates that around 80% of U.S. workers may see LLMs affect at least 10% of their tasks, with 19% potentially seeing over half impacted (Elloundou et al., 2023). Usage data from Anthropic indicates that in early 2025, at least some workers in 36% of occupations already were using Alf for at least 25% of their tasks (Handa et al., 2025).

While AI adoption in the workplace has shown promise in boosting productivity, it also raises concerns about job displacement, reduced human agency, and overreliance on automation (Hazra et al.,

*Equal Contribution

l

How can we preserve agency - preserving culture & context

A study* tested major AI Models - the foundations powering tools millions use daily - against cultural values from 107 countries worldwide

English is the reserve currency of Al

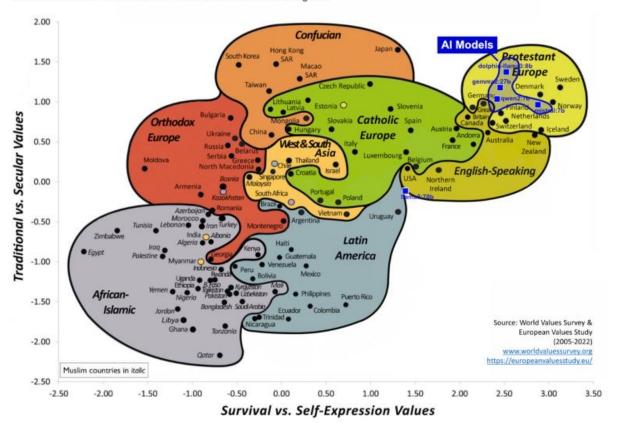
Each one reflected the same assumptions
- those of English-speaking, Western
European societies. None aligned with
how people in Africa, Latin America, or the
Middle East actually build trust, show
respect, or resolve conflicts.

Agentic Systems, especially in healthcare need

cultural intelligence

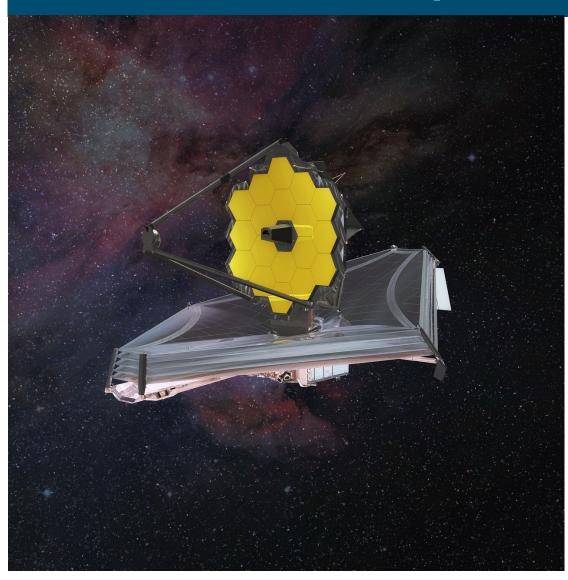
Al Models and their cultural alignment

This graph visualises the cultural alignment of various LLMs by plotting them on the Inglehart-Welzel Cultural Map - comparing their cultural values with those of different countries & cultural regions.



* https://www.linkedin.com/nosts/teyhannerman_theres-something-almost-nohody-is-talking-activity-7358405153139367937-4GVf

The Healthcare Telescope



From Better Eyes to New Windows

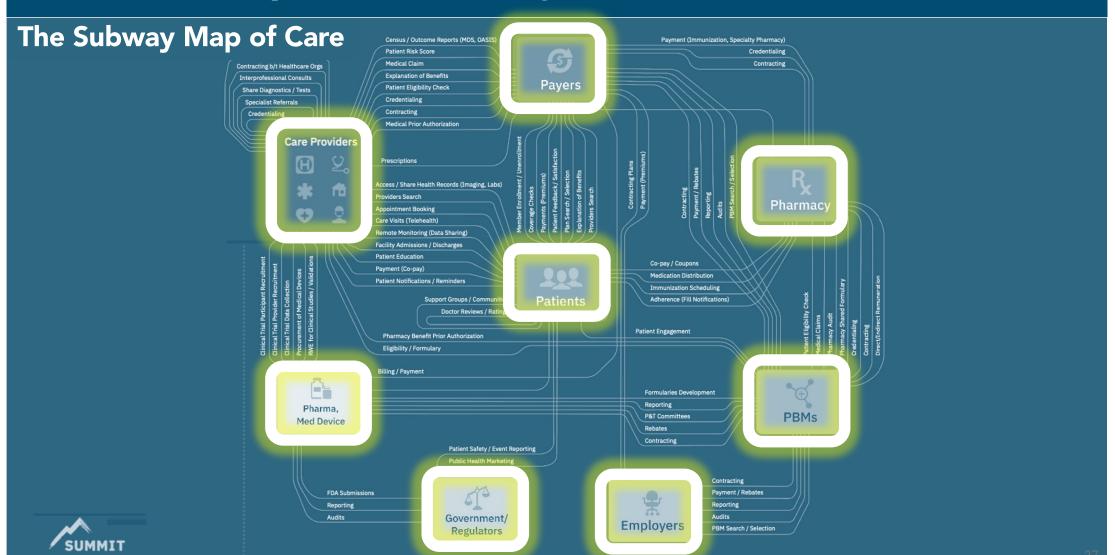
Initially, telescopes were valued simply for magnifying what the eye could see—sharper and farther—but they evolved to detect entirely new phenomena like radio waves or gravitational signatures, redefining observation itself

A Shared Direction

The most powerful tools do not just reflect our capabilities back to us. They help us work in new ways, see new patterns, and act with new perspective. To do that, they need to be introduced with care. Not as replacements for human roles, but as extensions of human systems

The Telescope problem

Increase the aperture of utility in care



Platform for supply side of health

Disha (दिशा)

means
"direction"
and
"path"

Happy Providers make Happy Patients

