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Dr. Hiroaki Kitano, CEO, SBX Corporation

Dr. Hiroaki Kitano's diverse career spans
leadership and academia. He is President &
CEO of SBX Corporation, President of the
Systems Biology Institute, and a Chief
Technology Fellow at Sony Group
Corporation.

Dr Kitano also leads as President & CEO of
Sony Computer Science Laboratories and is a
Professor at the Okinawa Institute of Science
and Technology. He received his Ph.D. in
computer science from Kyoto University.
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Understanding and Controlling
Large-Scale Complex Adaptive

Symbiotic Systems
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Yeast Cell Cycle
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Complex Network of Knowledge Flow
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Long-tail in Business

Weekly Sales (units sold)
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Amazon Ranking (x100,000) Based on Sales

Source: Brynjolfsson, Hu, and Smith, “Consumer Surplus in the Digital Economy,” Management

Science, November 2003.
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Long-tail in Biology

Kampo Traditional Herbal Medicine
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Nishi, A. et al., Deconstructing the traditional Japanese medicine “Kampo”:

compounds, metabolites and pharmacological profile of maoto, a remedy for flu-like
symptoms, npj Systems Biology and Applications, volume 3, Article number: 32 (2017)

Human Protein Interaction Network
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Hase T, Tanaka H, Suzuki Y, Nakagawa S, Kitano H (2009)
Structure of Protein Interaction Networks and Their Implications
on Drug Design. PLoS Comput Biol 5(10): €1000550.



Long-tail of Prefecture GDP in Japan
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Freq. of Event

Long-tail distribution

Closed & Controlled Environment

Open-ended Environment

Massive Resources
invested on data
collection and learning for
this regime



Grand Challenges in Al

2B iRBERE (Complete Information Problems)

19976 FIR 20144F 184 20164 HEE

1997 Chess 2014 Shogi 2016 Go

YR RERE (Physical Real World Problems )

BEET

Self-Driving

Yyh—

Soccer

RoboCup

The Grand Challenge (darpa.mil)
RoboCup Federation official website



https://www.robocup.org/
https://www.robocup.org/
https://www.darpa.mil/about-us/timeline/-grand-challenge-for-autonomous-vehicles

Failure Acceptance

Autonomous Robot Application Landscape

Too simple ChatGPT
Red Ocean of price Entertainment robot
competition
Home floor cleaning
Convenience Delivery Robot in
store backyard Limited Environment High risk &
requires massive
Warehouse . ERITE
Autonomous Vehicle
- Biological  in Professional Space Autonomous Vehicle
actory  experiments in Public Road
Structured & Semi-Structured Open-ended

Professional

Openness of Task Environment



Performance vs. Training Time

GT Sophy AlphaGo Zero
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Wurman, P.R., Barrett, S., Kawamoto, K. et al. Outracing champion Gran Silver, D., Schrittwieser, J., Simonyan, K. et al. Mastering the game of
Turismo drivers with deep reinforcement learning. Nature 602, 223-228 (2022). Go without human knowledge. Nature 550, 354—-359 (2017).
https://doi.org/10.1038/s41586-021-04357-7 https://doi.org/10.1038/nature24270

80% of the cost will spend on improving the last 5% of performance

Deployment strateqgy reflecting this reality is critical



Research Coverage on Genes
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Thomas Stoeger, Martin Gerlach, Richard I. Morimoto, Luis A. Nunes Amaral, Large-scale investigation of the
reasons why potentially important genes are ignored, PLoS Biology, 18 Sept. 2018



Long tail distribution of human gene publications
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Emerging “Tail”

Back in 80s, almost 100% papers are on 5% on genes
In 2015, 80% of papers are on 20% of genes,
20% of papers are on 80% of genes

100 P —————

The Tail emerged in the
Genomics Era

ceO A
L |
z 60 | «== 1980 -~ 2000 o
] i Reductionistic approach
N 40 E = - 1985 2005 happ;eared to work well in the
[ ead region as most genes are
%J 20 i % 1990 &= 2010 highly dgminant in thi network
; 1995 === 2015

20 40 60 80 100
Percentile

Thomas Stoeger, Martin Gerlach, Richard I. Morimoto, Luis A. Nunes Amaral, Large-scale investigation of the
reasons why potentially important genes are ignored, PLoS Biology, 18 Sept. 2018



Scientific discovery is an open-ended problem

A. Game of GO B. Scientific Discovery

Discovered knowledge:

Game of GO e e
recorded in Current scientific Knowledge discoverable
the past e knowledge <«——— with human-centric Al-
‘ Human hybrid system
Game of GO
played and Human discoverable knowledge:
learned by Hypothesis space searchable
AlphaGo extending current scientific Knowledge human may
knowledge not be able to discover
AlphaGo Zero generated  An entire Game of GO == The region for Al-
possible moves out of an  (Approximately 10°170  An entire hypothesis driven exploration
entire state space state space complexity  space for scientific —
and 10”360 game tree knowledge is infinite
complexity) or undefinable

Kitano, H., “Nobel Turing Challenge: creating the engine for scientific discovery”, npj Systems Biology and
Applications, 7 Article Number 29 2021



Systems Biology

Convergence of molecular biology, genomics, bioinformatics, control theory, information theory, engineering
design, computer science, high-performance computing

NOBEL SYMPOSIA

Nobel Symposium 146

Systems Biology Foundations of

Systems Biology

edited by Hiroaki Kitano

Systems Biology

Singa-Siiby Conference Center, Stockholm, Sweden
June 22-27, 2009
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Al as a Transformat




Where does AI impact most?

PRODUCTIVITY CREATIVITY SCIENTIFIC DISCOVERY



Limits of Human

Cognition




Entire Hypothetical Body of Scientific Knowledge

Some hypotheses
require experimental

verification

Are newly verified
hypotheses consistent

with current
knowledge, or do they

Experiments

Generated

Experiments
may include
errors and noise

Verified

generate

inconsistencies?
Integrating
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Scientific
Knowledge in Al
ystem
Papers and
Databases pers and databases
contains errors,
inconsistencies, and

Iedge ExtractiOn

Up-dating knowledge
may impact outcome of

previous hypothesis
even fabrications
Kitano, H., Al Magazine, March 2016

Portions of knowledge
believed to be correct
may in fact be false



- fficacy of Maoto over Influenza
RESDA >~ 7Ty HFADRhRE

Influenza Virus

Rat




Detected Compounds in Rat Plasma after Maoto in-take
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Rat Plasma Compounds arranged by intensity

450000
400000
350000

=

© 300000

200000
100000

50000
0

150000 -

Multi-step conversion of ephedrine
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Nishi, A. et al., Deconstructing the traditional Japanese medicine “Kampo”: compounds,

metabolites and pharmacological profile of maoto, a remedy for flu-like symptoms,
npj Systems Biology and Applications, volume 3, Article number: 32 (2017)
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Plasma concentration (ng/mi)
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Nishi, A. et al., Deconstructing the traditional Japanese medicine “Kampo”: compounds,

Metabolism in enterobacteria

Eubacterium

Glycyrrhizin
B-glucuronidase
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JYFNLLF 8 (Glycyrrhetinic acid) 12, HE»SESN35Y
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metabolites and pharmacological profile of maoto, a remedy for flu-like symptoms,
npj Systems Biology and Applications, volume 3, Article number: 32 (2017)
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https://doi.org/10.3389/fmicb.2022.956378

MANTA Project: full automation of multi-omics analysis

Phase-I: Meta-Genome Analysis System

B PIPELINE FOR HIGH THROUGHPUT MICROBIOME ANALYSIS s

BIOLOGY _
Biological Sample Sample
Sample Collection Storage A Sample preparation DNA extraction | Libraryprep . Sequencing .
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7 for future analyses 7\ 7\
\ >4 A d A \II A4
) Metagenomic Fecal sample Decapping Bead-beating Centrifugation Exlucle DNA lel:IfV DNA th:‘ln(lni
Collaborations Sample Prep. ! ;
Sample Metadata |
to Manta DB 8 |
Manta Project ~ H & ! —
Sample Loading E : 1
H
H ) B b 9 |
DNA Extraction s :
5
© Decapper Robot Arm Bead-Beater Centrifuge Opentron Workstation : Fluent Workstation llumina NovaSeq
Metabolomics Pipeline ) Library Prep. ©a !
yHetabolomics: fipeine., £
Long Term ‘ g2 Need to be with other |
Sample Storage O- 3a |
D Quantification )
Process Metadata 2
Store to to Manta DB s ’ i
Sample ID data & Sample ID data
-20°C Storage S ample 10, aata/. DNA concentration,  Library concentration >amPle ID data &
Long-term preservation Sample tracking Sequence data
Biobank quality data quality data
NGS Facility O p— 1 H
Preparation \ .
e Biobanking of human samples:
Move Samples to NGS Facility % Eacal \
. Fecal samples
Illumina DNA Seq. 2. Blt?od plasma or serum
. Sequencing 3. Urine
—» Metadata to 4. Tissue samples
RNA Seq Pipeline Manta DB 5. Other samples
Public Data NGS Data Demux
Download T T —
axonomy | Sample A_ | Sample . |
CBI, ENA, EBI, DDBJ, etc... - Jaxonomy, & Profile Bactoraz | 40%
Functional annotation (Tsv & csv) il
o~ P~ "
______ — =0 O O %
r | e s MAG (Fasta files)
| Raw reads Reads Quality Control: HQ reads Genome reconstruction: Genome quality
N Control | (FastQ files)  piscarding (FastQ files) 1 pssemble reads to obteln contigs (TsV & csv)
) | - Low quallty reads 2. Mapping reads to the contigs
§ | | - Reads from host organism 3. Binning contigs using mapping results 4‘ ’
023 - Sequencing adapters 4. Genome quality evaluation
€53, MAGs |
533 e
£ g E | Mining | Phylogenetics  Bacteris Avundance (%) Microbial
€85 | Analysis - Composition
S @ IR
ﬁ% 8| Taxonomy & !
25 5| Functional |
Iad P A |
S| Annotation | .
< H
S| i i
l |
| S — - Small reads are joined
into larger fragments
DNA Sequeincing data
Public Data kept Primary Data
Differential Machine
in data storage / to MantaDB Abundance Learning
=== Biological Samples Other pipelines / Computational pipeline: —
1 can be added based on /
m=m Lab Samples (automation) specific resaarch questions: - NGS generates two sequences data (Forward/Reverse) as output f"{les p
w=m Lab Samples (manual) o Abx Resistance Profiling - High-performance computers enable us to analyze sequence data in paralel .
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Nanaka’s Theory of Organizational Knowledge Sharing

Tacit knowledge Tacit knowledge

Tacit Socialization | Externalization | Explicit
knowledge knowledge
Tacit Internalization | Combination | ExPlicit

knowledge knowledge

L Explicit knowledge Explicit knowledge J




Process of Organizational Knowledge Creation

WA&W%&W&(@)?RM#-#—E; o

T P e, =
s Created Knowledge 2
" Tacit Articulated
SR ; S O
& Socialization Articulation
# (Transfer of (Translation of
5§E§ tacit knowledge) e— - o ] ¢ knowledge
?- into articulated
& knowledge)

\

Internali zation-‘-—— Combination

{(Reformulation and (Transfer and
creation of combination of

i tacit knowledge) articulated knowledge)

200

Kitano, H., et al., “Building Large-Scale and Corporate-Wide Case-Based Systems:
Integration of Organizational and Machine Executable Algorithms,” AAAI-92, 1992



Freq. of Event

Long-tail distribution

Closed & Controlled Environment

Open-ended Environment

Explicit and Articulated Tacit

Massive Resources
invested on data
collection and learning for
this regime



Workload
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Kitano, H., et al., “Building Large-Scale and Corporate-Wide Case-Based Systems:
Integration of Organizational and Machine Executable Algorithms,” AAAI-92, 1992



ase-Method
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(Documents, Source code,
Data, Knowladge, etc)
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Figure 1: Case-Method Cycle

Kitano, H., et al., “Case-Method:
Methodology for Building Large-Scale
Case-Based Systems,” AAAI-93, 1993



Workload
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Kitano, H., et al., “Case-Method: Methodology for Building Large-Scale Case-Based Systems,” AAAI-93, 1993
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Dealing with long-tail tacit knowledge

. . Composite mechanisms
* Clarity & Consistency for the event and their
outcome - Less likely to
be a single point failure -
* Controlled Autonomy more likely to be
combinatorial failure

* Transparency



* Observer Agent
* Predictor Agent
* Optimizer Agent

* Coordinator Agent




Continual Learning is Critical for Agentic Al
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Wurman, P.R., Barrett, S., Kawamoto, K. et al. Outracing champion Gran Silver, D., Schrittwieser, J., Simonyan, K. et al. Mastering the game of
Turismo drivers with deep reinforcement learning. Nature 602, 223-228 (2022). Go without human knowledge. Nature 550, 354—-359 (2017).

https://doi.org/10.1038/s41586-021-04357-7 https://doi.org/10.1038/nature24270



Team members
understand the
WHAT and WHY of

Learning Organization (by Peter Senge)

the change.
Shared
Vision
The path to new
Experience and understanding allows
prior learning = for and creates space
REALITY for mistakes.
Systems
Mental Thinking - Team
Models . Learning
How these concepts tie
together to drive change!
What people
KNOW and
Personal what they
Mastery NEED to know.



Healthcare Industry as a training ground for Agentic Al

Transparent, Clear & Consistent
Continual Learning & Organizational Design
Agentic Al - Human Relationship

Al Agent Learning & Learning Organization
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